
Spatial Dynamics of Malaria Transmission
Supporting Information 2 - Modular Notation

To do modular computation, we need to develop a modular notation as a way of encoding a model. This
vignette is designed to explain modular notation by constructing a model with five aquatic habitats (l = 5),
three patches (p = 3), and four human population strata (n = 4). We call it 5-3-4.

First, we present 5-3-4 using conventional notation (Section 1. Conventional), and then we eventually
rewrite it using modular notation (Section 3. Modular). Section 2. Transform, explains the differences
step by step.

For a discussion of setting up and solving these equations, we have developed software for R, called exDE,
which is downloadable at https://github.com/dd-harp/exDE. This model is solved in a Vignette at
https://dd-harp.github.io/exDE/articles/ex_534.html.

1. Conventional
The model 5-3-4 (See Fig S1) is presented here in conventional notation as a set of four linked dynamical
components. In the software, the two adult components are always handled together. This model was
designed to illustrate basic features of the framework and notation. We assume that:

• the first three habitats are found in patch 1; the last two are in patch 2; patch 3 has no habitats.

• patch 1 has no residents; patches 2 and 3 are occupied, each with two different population strata;

• Transmission among patches is modeled using the concept of time spent, which is similar to the visitation
rates that have been used in other models. While the strata have a residency, each stratum can spend
some time in each habitat.

Figure 1: Figure S1

Aquatic Dynamics

We let Li,j denote an aquatic population in the jth habitat in patch i. Similarly, we let ψi,j denote the
maturation rate, φi,j the density independent mortality rate, and θi,jLi,i the density dependent increase in
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mortality rates in response to mean crowding. We let Γi denote the daily egg laying rates in each patch, and
we let ξi,j be the fraction of eggs in the ith patch that are laid in the jth habitat.

The following system of equations describes mosquito aquatic dynamics in five habitats. The first three are
found in one patch, and the last two are found in the second patch. The third patch has no aquatic habitats:

dL1,1/dt = ξ1,1Γ1 − (ψ1,1 + φ1,1 + θ1,1L1,1)L1,1
dL1,2/dt = ξ1,2Γ1 − (ψ1,2 + φ1,2 + θ1,2L1,2)L1,2
dL1,3/dt = ξ1,3Γ1 − (ψ1,3 + φ1,3 + θ1,3L1,3)L1,3
dL2,1/dt = ξ2,1Γ2 − (ψ2,1 + φ2,1 + θ2,1L2,1)L2,1
dL2,2/dt = ξ2,2Γ2 − (ψ2,2 + φ2,2 + θ2,2L2,2)L2,2

(1)

We assume that αi,j = ψi,jLi,j/2, and

Adult Mosquito Dynamics

We let Mi denote adult mosquito density in patches i = 1, 2, 3. We let gi denote per-capita mortality, σi
denote the emigration rate, and ki,j the fraction of emigrating mosquitoes that move from i to j. Recruitment
from aquatic habitats is the sum of emergence rates, so we write:

dM1
dt =

∑
j α1,j − g1M1 − σ1M1 + k2,1σ2M2 + k3,1σ3M3

dM2
dt =

∑
j α2,j − g2M2 − σ2M2 + k1,2σ1M1 + k3,2σ3M3

dM3
dt =

∑
j α3,j − g3M3 − σ3M3 + k1,3σ1M1 + k2,3σ2M2

(2)

Noting that
∑
j α3,j = 0 because there are no habitats in patch 3, so it is actually reduntant.

We have developed a model for gravid mosquitoes to model egg laying rates. We let Gi denote the density of
gravid / egg laying mosquitoes in in patches 1, 2, 3.

We let νi denote the per-capita egg-laying rate, and fi denote the blood feeding rate.

dG1
dt = f1(M1 −G1)− ν1G1 − g1G1 − σ1G1 + k2,1σ2G2 + k3,1σ3G3
dG2
dt = f2(M2 −G2)− ν2G2 − g2G2 − σ2G2 + k1,2σ1G1 + k3,2σ3G3
dG3
dt = f3(M3 −G3)− ν3G3 − g3G3 − σ3G3 + k1,3σ1G1 + k2,3σ2G2

(3)

To connect egg laying by adults to eggs deposited, we let Γi = χνiGi, where χ is the number of eggs laid, per
batch. We would write Γ3 = χν3G3 but if there are really no habitats, then mosquitoes must leave a patch to
blood feed, so Γ3 = 0.

Parasite Infection Dynamics in Mosquitoes

We let Yi denote the density of infected mosquitoes in patches 1, 2, 3.

To model infection dynamics, we let κi denote the probability a mosquito would become infected after blood
feeding on a human. In a moment, we will describe how this is computed, but for now, we can write:

dY1
dt = f1q1κ1(M1 − Y1)− g1Y1 − σ1Y1 + k2,1σ2Y2 + k3,1σ3Y3
dY2
dt = f2q2κ2(M2 − Y2)− g2Y2 − σ2Y2 + k1,2σ1Y1 + k3,2σ3Y3
dY3
dt = f3q3κ3(M3 − Y3)− g3Y3 − σ3Y3 + k1,3σ1Y1 + k2,3σ2Y2

(4)

Here we want to model adult mosquito density as a term that accounts for a delay, but without implementing
a delay differential equation. Instead we assume that Z is a function of Y , but it discounts for surviving
and dispersing through the EIP, which lasts τ days (by assumption). Without movement, we would get that
Zi = e−giτYi, but with movement, we must develop a matrix that computes survival and dispersal through
the EIP. To do so, we let K denote the dispersal matrix (using the terms from above) describing where
emigrating mosquitoes leave.
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K =

 0 k2,1 k3,1
k1,2 0 k3,2
k1,3 k2,3 0


Now, we can formulate a single matrix that describes survival and dispersal, denoted Ω:

Ω = diag(g) + (I −K) · diag(σ)

where e−Ωτ describes survival and dispersal of a cohort of mosquitoes through the EIP. Matrix exponentiation
is computed in R using the function expm. We let Z = e−ΩτY denote the density of infective mosquitoes.

Blood Feeding and Transmission

We have already developed a model of mosquito mobility. Unlike mosquitoes, humans have a home, so we
follow a different set of rules using a matrix that describes time spent, Θ. The rows of Θ represent patches
and the columns of Θ represent human population strata. We let Θi,j denote the fraction of a day spent
by the jth population stratum in the ith patch. Each column of Θ (looking across the index i for a fixed j)
represents time spent by each one of the strata in each one of the populations. There are four strata and
three patches, so:

Θ =

 Θ1,1 Θ1,2 Θ1,3 Θ1,4
Θ2,1 Θ2,2 Θ2,3 Θ2,4
Θ3,1 Θ3,2 Θ3,3 Θ3,4


As we have defined this model, there are four strata and three patches. The first two strata are found in
patch 2, and the second two strata are found in patch 3. This is a somewhat unconventional way of modeling
humans – most models for malaria spatial dynamics have a one patch, one stratum rule – but if we do not
allow for humans in patches to be segmented, then the structure of the model enforces a rule that humans
in patches are homogeneous. In fact, those populations could differ in many ways that are important for
transmission. We must now develop a notation for dealing with the human strata.

One way to build the model is to index population density by their residency, patch 2 first stratum would
have index 2, 1, and we now have a population vector:

H =


H2,1
H2,2
H3,1
H3,2

 .
The challenge is to keep this notation while we describe where these humans spend their time. The
information about residency ends up being used in setting the parameter values in Θ, but now the jth column
in Θ would map onto a population with two indices. In this new model, residency is somewhat irrelevant for
modeling transmission because all the information we need to model transmission is stored in the time spent
matrix. The notation easier if we use a single index, so we let Hi be population density of each stratum.

H =


H1
H2
H3
H4

 .
Here, we assume humans are all equally likely to be bitten, so the ambient density of humans, which we will
call availability, is

Wi =
∑
j

Θi,jHj .
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In this model, availability is equal to ambient density because all humans are bitten at the same rate. Later,
we will introduce biting weights so that the strata could be exposed at different rates, reflecting differences in
exposure due to age, net use, or other factors.

We assume that qi denotes the fraction of bites taken on a human, so fiqiZi is the net daily human blood
feeding rate, and there are

fiqi
Zi
Wi

bites per person in that patch. We could call Ei the daily EIR, but this is not what a person in a stratum
would experience. Instead, a person in the jth stratum spends some time in every patch, so for the jth
stratum, the rate of exposure is:

Ej =
3∑
i=1

Θi,jfiqi
Zi
Wi

Note that the index on E describes a population stratum, not a patch.

We also need to define κi, the probability a mosquito in the ith patch would become infected after biting a
human. To do so, we let xj denote the probability a mosquito would become infected after biting a human in
the jth stratum. Now, we are summing in a patch across stratum and we let:

κi =
∑4
j=1 Θi,jxjHj∑4
j=1 Θi,jHj

.

Infection Dynamics in Humans

We let Xi denote the density of infected and infectious humans, and r the rate that infections clear. We let b
denote the fraction of infective bites that cause an infection. Now, a person’s risk is computed by adding the
product of their time at risk and the daily EIR across all three patches:

dX1
dt = b

∑3
i=1 Θi,1fiqi

Zi

Wi
(H1 −X1)− rX1

dX2
dt = b

∑3
i=1 Θi,2fiqi

Zi

Wi
(H2 −X2)− rX2

dX3
dt = b

∑3
i=1 Θi,3fiqi

Zi

Wi
(H3 −X3)− rX3

dX4
dt = b

∑3
i=1 Θi,4fiqi

Zi

Wi
(H4 −X4)− rX4

(5)

Or equivalently, using Ei:

dX1
dt = bE1(H1 −X1)− rX1
dX2
dt = bE2(H2 −X2)− rX2
dX3
dt = bE3(H3 −X3)− rX3
dX4
dt = bE4(H4 −X4)− rX4

(6)

Finally, to complete the model, we need to compute κi for each patch, which is used by the model describing
parasite infection dynamics in mosquitoes.

We let xj = cjXj/Hj denote the fraction of bites on an individual from the jth stratum that would infect the
mosquito. Since xjHj = cjXj , we can rewrite κj using :

κ1 =
∑

j
Θ1,jcjXj∑

j
Θ1,jHj

κ2 =
∑

j
Θ2,jcjXj∑

j
Θ2,jHj

κ3 =
∑

j
Θ3,jcjXj∑

j
Θ3,jHj

(7)
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These κi are used in the equations dYi/dt above.

We have now fully specified the model that we call 5-3-4 using traditional notation.

Transform
In this section, we rewrite the model 5-3-4 with modular notation. To see the full model in modular notation,
which directly parallels the conventional model, skip ahead to the next tab.

Here, we go step by step through each component, and we describe how the new notation facilitates modular
construction of models.

Aquatic Dynamics (L)

Here we describe how to translate the aquatic mosquito population model from conventional notation into
modular notation, which facilitates modular computation.

Reindex In the modular notation, we re-index from double indices to a single index. In the triplet below,
the first column is the old set of indices, which maps to (7→) the middle column is the new set of indices, and
the last column – called the membership vector – is the patch each aquatic habitat is found in (∈); the [old
index] 7→ [new index] ∈ [patch index]


1, 1
1, 2
1, 3
2, 1
2, 2

 7→


1
2
3
4
5

 ∈


1
1
1
2
2

 (8)

This membership vector is, in fact, the most compact way of representing patch membership. For purposes of
encoding a model, we need only store the membership vector; the same file could store parameters, or any
other properties of the habitat.

Since all variables and parameters in modular notation have a single index; the new modular index no longer
conveys information about location. Instead, for computational purposes, information about location is stored
in the membership matrix, N . In modular notation, we let the ith element is the new index, and the jth
element the corresponding entry in the membership vector, and the i, jth element of the membership matrix
is 1.

N =

 1 1 1 0 0
0 0 0 1 1
0 0 0 0 0

 (9)

Using this, we re-index all the parameters.

We introduce a new term η that describes egg deposition rates in the habitats, where

ηi = ξi,jΓi

denote the egg laying rate if any eggs are laid, and ηi = 0 otherwise. The dynamics are now described by the
system of i = 1, 2, ...5 differential equations:

dLi

dt = ηi − (ψi + φi + θiLi)Li (10)

and we let

αi = ψiLi/2 (11)
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denote the emergence rate of adult, female mosquitoes.

Vectorize All our variables and parameters are defined as vectors. For example, we let L denote the column
vector:

L =


L1
L2
L3
L4
L5

 (12)

In the same way, we represent ψ, φ, θ, and α as vectors.

Similarly, we let Γ be a vector describing egg laying rates. We want to compute egg laying, so we redefine the
vector ξ:

ξ =


ξ1,1
ξ1,2
ξ1,3
ξ2,1
ξ2,2

 (13)

Note that we have constrain parameters such that every egg is laid in a habitat,∑
j

ξi,j = 1

which is equivalent to:

N T · ξ = sign(Γ)

where sign returns a 1 if any eggs are laid, and 0 otherwise.

We let U denote the egg distribution matrix:

U = (N · diag(ξ))T =


ξ1,1 0 0
ξ1,2 0 0
ξ1,3 0 0
0 ξ2,1 0
0 ξ2,2 0

 (14)

Finally, we let
η = U · Γ

describe egg deposition rates. As described above, the new parameter ηi replaces ξi,j · Γi, and we represent η
in vector form.

Model Egg laying rates, Γ, are computed byM, passed to L, and transformed into egg deposition rates, η:

η = U · Γ (15)

The aquatic dynamics are described by the equations:

dL

dt
= η − (ψ + φ+ θL)L (16)
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Emergence rates from the aquatic habitats are defined, transformed.

α = ψL
2

Λ = N · α (17)

The vector Λ is passed back toM:

Generic If we take a birds-eye view of model building, we can describe model specification as an instance
of a generic process:

• Define the model structure in relation to other components:

– Define the habitat membership matrix, N , that relates the structural elements ofM (p patches)
and L (l habitats)

– Define model inputs. In this case, Γ are the egg laying rates, computed byM and passed to L.

– We need to specify how eggs are distributed among the patches. We define a vector ξ, where

N T · ξ = 1.

– We compute the egg-laying matrix, U :

U = N T · diag(ξ).

– Egg laying rates (in patches) is transformed into egg deposition rates (in habitats) using the egg
distribution matrix, U :

η = U · Γ

• Define the dynamics, dL/dt.

– Define the state space. In this case, the model variables are fully defined by a column vector L of
length l.

– Define model parameters. In this case, ψ are per-capita maturation rates, and φ+ θL per-capita
mortality rates. All parameters are vectors of length l.

– The dynamics are described by a system of ordinary differential equations:

dL

dt
= η − (ψ + φ+ θL)L (18)

• Define the outputs of L

– We define a term describing the emergence of adults from habitats α. In this case, α = ψL/2.

– The net emergence rate of adult mosquitoes, per patch, which is computed by L and passed toM,
is

Λ = N · α.

Adult Mosquitoes (M & Y)

Here we describe how to translate the mosquito ecology and parasite infection dynamics models from
conventional notation into modular notation, which facilitates modular computation.
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Vectorize There is no need to re-indexM, in part, because the other components are defined to interact
with the patches. Most of the
work is done by defining N in the interface with L, or in defining the mixing matrix β and the computation
of κi
To simplify the equations, once again, we introduce matrix notation. Let

M =

 M1
M2
M3


and we also transform G and Y into column vectors. Similarly, we turn f , ν, and κ into column vectors.

We note that in defining the relationship between Y and Z, we defined a demographic matrix Ω. To recap,
we let g and σ denote vectors describing survival in and emigration from the patches. The dispersal matrix,
K is defined by

K =

 0 k2,1 k3,1
k1,2 0 k3,2
k1,3 k2,3 0


With these, we define

Ω = diag(g) + (I −K) · diag(σ)

We can now write the equations describing adult mosquitoes, using Λ as defined in L, κ as defined in X
(below), and Ω:

dM
dt = Λ− Ω ·M
dG
dt = f(M −G)− νG− Ω ·G
dY
dt = fqκ(M − Y )− Ω · Y

(19)

One core output of this dynamical component is egg laying

Γ = χνG (20)

The other output is

Z = e−ΩτY (21)

Generic If we take a birds-eye view of model building, we can describe model specification as an instance
of a generic process:

• Define the model structure

– Define the patches.

– Define model inputs from L. In this case, Λ are the emergence rates, computed by L and passed
toM.

– Define model inputs from X . In this case, κ describes NI. It is computed by B and X and passed
toM.

• Define the dynamics, dM/dt.

– Define the state space. In this case, the model variables are fully defined by column vectors of
length p: adult mosquitoes, M ; gravid mosquitoes G; and infected mosquitoes Y .
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– Define model parameters. In this case, g, σ, and the dispersal matrix K, which are transformed
into the demographic matrix Ω:

Ω = diag(g) + (I −K) · diag(σ)

– We also define the parameter vectors ν, f , q and a scalar parameter χ

– The dynamics are described by a system of ordinary differential equations:

dM
dt = Λ− Ω ·M
dG
dt = f(M −G)− νG− Ω ·G
dY
dt = fqκ(M − Y )− Ω · Y

(22)

• Define the outputs ofM

– We define egg laying rates as Γ = χνG

– We define the density of blood feeding mosquitoes, Z = e−ΩτY

Human Infections (X )

Blood Feeding (B) Because we resisted using double indices, we no longer have to worry about re-indexing.
We find it useful, however, to store information about residency in a membership matrix:

J =

 0 0 0 0
1 1 0 0
0 0 1 1


The blood feeding model transforms a time spent matrix, Θ, and a vector H describing densities into a vector
W (of length p) describing availability of humans in patches:

W = Θ ·H

Note that if we take J · H, then we get the total density of residents, or the census population. If we take
(J �×) ·H, where � is the elementwise (or Hadamard) product, then we get time spent by residents at
home.

We also define a matrix β that describes how bites are distributed among humans:

β = ΘT · diag
(

1
W

)
Now, for example, we can define the number of bites, per person, per day, by strata. While fqZ describes
biting, and fqZ/W is a measure of risk, with units bites per person, per day; E computes bites, per person,
per day summing risk over habitats weighted by time spent:

E = ΘT · diag
(
fqZ

W

)
= β · fqZ

Vectorize A lot of the hard work has been done in B. As before, we rewrite

X =


X1
X2
X3
X4

 (23)

and we also transform the parameter
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Now, we can rewrite the dynamics of infection as:

dX

dt
= bβ · fqZ(H −X)− rX (24)

and
κ = βT · cX (25)

Generic If we take a birds-eye view of model building, we can describe model specification as an instance
of a generic process:

• Define the model structure

– Define the stratum membership matrix, J .

– Define the population strata, including the number of strata n and the population size of each
stratum, H.

– Define a model of mobility, Θ, that describes time spent.

– Transform time spent into a mixing matrix, β, through a model of blood feeding, B.

– Define model inputs from Y. Blood feeding among patches, at the net rate fqZ is transformed
into a measure of exposure distributed among patches as:

E = β · fqZ

• Define the dynamics, dX/dt.

– Define the state space. In this case, the model variables are fully defined by a column vector of
length n: the density of infected humans in each stratum, X.

– Define model parameters. In this case, r, b, and c.

– The dynamics are described by a system of ordinary differential equations:

dX

dt
= bβ · fqZ(H −X)− rX (26)

• Define the outputs of X

– The primary output is defined by the probability a mosquito would become infected after biting a
human in each stratum, x. This is defined by a relationship: x = cXH, so that xH = cX.

– The NI is
κ = βT · cX

2. Modular
After rewriting the model in modular notation, every parameter, variable, or term is either a vector or a
matrix.

Habitat Structure

We assume the habitats are situated in in patches as defined by the habitat membership matrix N , where the
Ni,j ∈ N = 1 if the ith habitat is found in the jth patch. We let ξ be a vector that describes the proportion
of eggs laid in each habitat by the adult mosquitoes in that habitat, so

N T · ξ = 1.

The egg laying matrix U is defined by
U = N T · diag(ξ)
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Egg laying rates, Γ, are computed byM, passed to L, and transformed:

η = U · Γ (27)

Aquatic Dynamics

We let L, a vector, denote larval densities in an aquatic population. Similarly, we let ψ denote the maturation
rate, φ the density independent mortality rate, and θL the density dependent increase in mortality rates in
response to mean crowding. The aquatic dynamics are described by the equations:

dL

dt
= η − (ψ + φ+ θL)L (28)

where every quantity in these equations is a vector of length l.

Emergence rates from the aquatic habitats, α, are defined and transformed to emergence rates in patches, Λ,
using the following pair of relationships:

α = ψL
2

Λ = N · α (29)

The term Λ is used in dM/dt.

Adult Mosquito Dynamics

We let M denote adult mosquito density; G gravid mosquitoes, and Y infected mosquitoes. We let g denote
per-capita mortality in the patches, σ the emigration rate, and K the dispersal matrix. From these, we define
the demographic matrix:

Ω = diag(g) + (I −K) · diag(σ)

We also let f denote the overall blood feeding rate, q the human fraction, γ the egg laying rate. Given Λ
(from above) and κ (defined below) equations describing adult mosquito ecology and infection dynamics are:

dM
dt = Λ− Ω ·M
dG
dt = f(M −G)− νG− Ω ·G
dY
dt = fqκ(M − Y )− Ω · Y

(30)

The core outputs of this dynamical component are egg laying rates:

Γ = χνG (31)

and the density of infectious mosquitoes:

Z = e−ΩτY (32)

Blood Feeding

We formulate a matrix describing, Θ, where Θi,j ∈ Θ denotes the fraction of time spent by the jth population
stratum in the ith patch. We let H describe population density of each stratum. The density of humans in
each patch is

W = Θ ·H.

and we define β as the mixing matrix:
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β = ΘT · diag
(

1
W

)
Parasite Infection Dynamics in Humans

We let X denote the density of infected and infectious humans. Let r denote the rate that infections clear; b
the probability a mosquito becomes infected, per infectious bite; and c the probability a mosquito becomes
infected after blood feeding on a human in each stratum. Now, the dynamics of infection in the strata are
described by:

dX

dt
= bβ · fqZ · (H −X)− rX (33)

The primary output is the NI (κ). To compute NI, we first define the probability a mosquito becomes infected
after biting an individual in each stratum is defined by x = cX/H. From this, we compute NI (κ)

κ = βT · cX = βT · xH (34)
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